Курс лекций - Микропроцессоры

Виды двоичных кодов


В микропроцессорах двоичные коды используются для представления любой обрабатываемой информации. При этом разрядность обрабатываемых чисел может превышать разрядность самого процессора и используемой в нём памяти. В этом случае длинное число может занимать несколько ячеек памяти и обрабатываться несколькими командами процессора. При обработке все ячейки памяти, выделенные под многобайтное число, рассматриваются как одно число.

Для представления числовой информации могут использоваться знаковые и беззнаковые коды. Для определённости примем длину слова процессора равной восьми битам.

Беззнаковые двоичные коды.

Первый вид двоичных кодов, который мы рассмотрим - это целые беззнаковые коды. В этих кодах каждый двоичный разряд представляет собой степень цифры 2:

При этом минимально возможное число, которое можно записать таким двоичным кодом, равно 0. Максимально возможное число, которое можно записать таким двоичным кодом, можно определить как:

Этими двумя числами полностью можно определить диапазон, чисел которые можно представить таким двоичным кодом. В случае двоичного восьмиразрядного беззнакового целого числа диапазон будет: диапазон чисел, которые можно записать таким кодом: 0 .. 255. Для шестнадцатиразрядного кода этот 0 .. 65535. В восьмиразрядном процессоре для хранения такого числа используется две ячейки памяти, расположенные в соседних адресах. Для работы с такими числами используются специальные команды.

Второй вид двоичных кодов, который мы рассмотрим - это прямые целые знаковые коды. В этих кодах старший разряд в слове используется для представления знака числа. В прямом знаковом коде нулем обозначается знак '+', а единицей - знак '-'. В результате введения знакового разряда диапазон чисел смещается в сторону отрицательных чисел:

В случае двоичного восьмиразрядного знакового целого числа диапазон чисел, которые можно записать таким кодом: -127 .. +127. Для шестнадцатиразрядного кода этот диапазон будет: -32767 .. +32767. В восьмиразрядном процессоре для хранения такого числа тоже используется две ячейки памяти, расположенные в соседних адресах.




Недостатком такого кода является то, что знаковый разряд и цифровые разряды приходится обрабатывать раздельно. Алгоритм программ, работающий с такими кодами получается сложный. Для выделения и изменения знакового разряда приходится применять механизм маскирования разрядов, что резко увеличивает размер программы и уменьшает ее быстродействие. Для того, чтобы алгоритм обработки знакового и цифровых разрядов не различался, были введены обратные двоичные коды.

Знаковые обратные двоичные коды. 

Обратные двоичные коды отличаются от прямых только тем, что отрицательные числа в них получаются инвертированием всех разрядов числа. При этом знаковый и цифровые разряды не различаются. Алгоритм работы с такими кодами резко упрощается.



Тем не менее при работе с обратными кодами требуется специальный алгоритм распознавания знака, вычисления абсолютного значения числа, восстановления знака результата числа. Кроме того, в прямом и обратном коде числа для запоминания числа 0 используется два кода, тогда как известно, что число 0 положительное и отрицательным не может быть никогда.

Знаковые дополнительные двоичные коды.

От перечисленных недостатков свободны дополнительные коды. Эти коды позволяют непосредственно суммировать положительные и отрицательные числа не анализируя знаковый разряд и при этом получать правильный результат. Все это становится возможным благодаря тому, что дополнительные числа являются естественным кольцом чисел, а не исскуственным образованием как прямые и обратные коды. Кроме того немаловажным является то, что вычислять дополнение в двоичном коде чрезвычайно легко. Для этого достаточно к обратному коду добавить 1:



Диапазон чисел, которые можно записать таким кодом: -128 .. +127. Для шестнадцатиразрядного кода этот диапазон будет: -32768 .. +32767. В восьмиразрядном процессоре для хранения такого числа используется две ячейки памяти, расположенные в соседних адресах.

В обратных и дополнительных кодах наблюдается интересный эффект, который называется эффект распространения знака.


Он заключается в том, что при преобразовании однобайтного числа в двухбайтное достаточно всем битам старшего байта присвоить значение знакового бита младшего байта. То есть для хранения знака числа можно использовать сколько угодно старших бит. При этом значение кода совершенно не изменяется.

Использование для представления знака числа двух бит предоставляет интересную возможность контролировать переполнения при выполнении арифметических операций. Рассмотрим несколько примеров.

1) Просуммируем числа 12 и 5



В этом примере видно, что в результате суммирования получается правильный результат. Это можно проконтролировать по флагу переноса C, который совпадает со знаком результата (действует эффект распространения знака).

2) Просуммируем два отрицательных числа -12 и -5



В этом примере флаг переноса C тоже совпадает со знаком результата, то есть переполнения не произошло и в этом случае

3) Просуммируем положительное и отрицательное число -12 и +5



В этом примере при суммировании положительного и отрицательного числа автоматически получается правильный знак результата. В данном случае знак результата отрицательный. Флаг переноса совпадает со знаком результата, поэтому переполнения не было (мы можем убедиться в этом непосредственными вычислениями на бумаге или на калькуляторе).

4) Просуммируем положительное и отрицательное число +12 и -5



В данном примере знак результата положительный. Флаг переноса совпадает со знаком результата, поэтому переполнения не было и в этом случае.

5)Просуммируем числа 100 и 31



В этом примере видно, что в результате суммирования произошло переполнение восьмибитовой переменной, т.к. в результате операции над положительными числами получился отрицательный результат. Однако если рассмотреть флаг переноса, то он не совпадает со знаком результата. Эта ситуации является признаком переполнения результата и легко обнаруживается при помощи операции "исключающее ИЛИ" над старшим битом результата и флагом переноса C. Большинство процессоров осуществляют эту операцию аппаратно и помещают результат во флаг переполнения OV.





В этом примере результате операции над отрицательными числами в результате суммирования произошло переполнение восьмибитовой переменной, т.к. получился положительный результат. И в этом случае если рассмотреть флаг переноса C, то он не совпадает со знаком результата. Отличие от предыдущего случая только в комбинации этих бит. В примере 5 говорят о переполнении результата (комбинация 01), а в примере 6 об антипереполнении результата (комбинация 10).

Представление дробных чисел в двоичном коде с фиксированной запятой.

Кроме целых чисел часто требуется работать с дробными числами. Следующий вид двоичных кодов, который мы рассмотрим - это дробные коды. Как и в случае целых чисел, дробные числа могут быть беззнаковые и знаковые. Для записи знаковых чисел могут быть использованы прямые, обратные и дополнительные коды. Принцип их построения точно такой же, как и в случае целых чисел.

Рассмотрим, как можно записать дробное число. До сих пор мы предполагали, что двоичная запятая находится правее самого младшего разряда. Но кто сказал, что она должна всегда находиться в этом месте? Мы можем договориться, что запятая находится слева от самого старшего разряда, и тогда в такой переменной можно будет записывать только дробные числа:



Или договоримся, что она находится точно посередине переменной, и тогда мы сможем записывать смешанные числа:



Остальные случаи рассматривать не будем. Они строятся точно так же как и для целых чисел.

Представление чисел в двоичном коде с плавающей запятой.

Часто приходится обрабатывать очень большие числа (например, расстояние между звёздами) или наоборот очень маленькие числа (например, размеры атомов или электронов). При таких вычислениях пришлось бы использовать числа с очень большой разрядностью. В то же время нам не нужно знать расстояние между звёздами с точностью до миллиметра. Для вычислений с такими величинами числа с фиксированной запятой неэффективны.

В десятичной арифметике для записи таких чисел используется алгебраическая форма.


При этом число записывается в виде мантиссы, умноженной на 10 в степени, отображающей порядок числа, Например:

0,2*105; 0,16*10-38

Для записи двоичных чисел тоже используется такая форма записи. Эта форма записи называется запись числа с плавающей точкой. Напомним, что мантисса не может быть больше единицы и после запятой в мантиссе не может записываться ноль.

А теперь рассмотрим промышленные стандарты, используемые для представления чисел в компьютерах. Существует стандарт IEEE 754 для представления чисел с одинарной точностью (float) и с двойной точностью (double). Для записи числа в формате с плавающей запятой одинарной точности требуется тридцатидвухбитовое слово. Для записи чисел с двойной точностью требуется шестидесятичетырёхбитовое слово. Чаще всего числа хранятся в нескольких соседних ячейках памяти процессора. Форматы числа в формате с плавающей запятой одинарной точности и числа в формате с плавающей запятой удвоенной точности приведены на рисунке



На рисунке буквой S обозначен знак числа, 0 - это положительное число, 1 - отрицательное число. e обозначает смещённый порядок числа. Смещение требуется, чтобы не вводить в число еще один знак. Смещённый порядок всегда положительное число. Для одинарной точности для порядка выделено восемь бит. Для смещённого порядка двойной точности отводится 11 бит. Для одинарной точности смещение принято 127, а для двойной точности - 1023. В десятичной мантиссе после запятой могут присутствовать цифры 1:9, а в двоичной - только 1. Поэтому для хранения единицы после двоичной запятой не выделяется отдельный бит в числе с плавающей запятой. Единица подразумевается, как и двоичная запятая. Кроме того, в формате чисел с плавающей запятой принято, что мантисса всегда больше 1. То есть диапазон значений мантиссы лежит в диапазоне от 1 до 2.

Рассмотрим несколько примеров:

1) Определить число с плавающей запятой, лежащее в четырёх соседних байтах:

11000001 01001000 00000000 00000000

- Знаковый бит, равный 1 показывает, что число отрицательное.



- Экспонента 10000010 в десятичном виде соответствует числу 130. Вычтя число 127 из 130, получим число 3.

- Теперь запишем мантиссу: 1,100 1000 0000 0000 0000 0000

- И, наконец, определим десятичное число: 1100,1b = 12,5d

2) Определить число с плавающей запятой, лежащее в четырёх соседних байтах:

11000011 00110100 00000000 00000000

- Знаковый бит, равный 1 показывает, что число отрицательное.

- Экспонента 10000110 в десятичном виде соответствует числу 134. Вычтя число 127 из 134, получим число 7.

- Теперь запишем мантиссу: 1,011 0100 0000 0000 0000 0000

- И, наконец, определим десятичное число: 10110100b=180d

Для того чтобы записать ноль, достаточно записать в смещенный порядок число 00000000b. Значение мантиссы при этом не имеет значения. Число, в котором все байты равны 0, тоже попадает в этот диапазон значений.

Бесконечность соответствует смещенному порядку 11111111b и мантиссе, равной 1,0. При этом существует минус бесконечность и плюс бесконечность (переполнение и антипереполнение), которые часто отображаются на экран монитора как +INF и -INF.

Все остальные комбинации битов (в том числе и все единицы) воспринимаются как не числа и отображаются на экран: NaN.

Запись десятичных чисел.

Иногда бывает удобно хранить числа в памяти процессора в десятичном виде (Например, для вывода на экран дисплея). Для записи таких чисел используются двоично-десятичные коды. Для записи одного десятичного разряда используется четыре двоичных бита. Эти четыре бита называются тетрадой. Иногда встречается название, пришедшее из англоязычной литературы: нибл. При помощи четырех бит можно закодировать шестнадцать цифр. Лишние комбинации в двоично-десятичном коде являются запрещенными. Таблица соответствия двоично-десятичного кода и десятичных цифр приведена ниже:



Остальные комбинации двоичного кода в тетраде являются запрещенными. Запишем пример двоично-десятичного кода:

1258 = 0001 0010 0101 1000

589 = 0000 0101 1000 1001

Достаточно часто в памяти процессора для хранения одной десятичной цифры выделяется одна ячейка памяти (восьми, шестнадцати или тридцатидвухразрядная).


Это делается для повышения скорости работы программы. Для того, чтобы отличить такой способ записи двоично-десятичного числа от стандартного, способ записи десятичного числа, как это показано в примере, называется упакованной формой двоично-десятичного числа. Запишем те же числа, что и в предыдущем примере в неупакованном двоично-десятичном коде для восьмиразрядного процессора:

1258 =00000001 00000010 00000101 00001000 589 = 00000000 00000101 00001000 00001001 Суммирование двоично-десятичных чисел.

Суммирование двоично-десяичных чисел можно производить по правилам обычной двоичной арифметики, а затем производить двоично-десятичную коррекцию. Двоично-десятичная коррекция заключается в проверке каждой тетрады на допустимые коды. Если в какой либо тетраде обнаруживается запрещенная комбинация , то это говорит о переполнении. В этом случае необходимо произвести двоично-десятичную коррекцию. Двоично-десятичная коррекция заключается в дополнительном суммировании числа шесть (число запрещенных комбинаций) с тетрадой, в которой произошло переполнение или произошёл перенос в старшую тетраду. Приведём два примера:





Запись текстов в памяти процессора.

Все символы и буквы могут быть закодированы при помощи восьми двоичных символов. Наиболее распространенными таблицами являются таблицы ASCII с национальными расширениями, применяющиеся в DOS (и которые можно использовать для записи текстов в микропроцессорах), и таблицы ANSI, применяющиеся в WINDOWS. В таблицах ASCII и ANSI первые 128 символов совпадают. В этой части таблицы содержатся символы цифр, знаков препинания, латинские буквы верхнего и нижнего регистров и управляющие символы. Национальные расширения символьных таблиц и символы псевдографики содержатся в последних 128 кодах этих таблиц, поэтому русские тексты в операционных системах DOS и WINDOWS не совпадают.

[ ]


Содержание раздела